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A. INTRODUCTION

0 The long-range objective of the work performed under this contract has

been to construct realistic models of water waves using solitons and other

intrinsically nonlinear waves as the fundamental building blocks. In

principle, both deterministic and statistical models could be constructed in

W this way, and the models might be appropriate either for surface or for

internal waves, in deep water or in shallow water. The basic idea is that

* because water waves are known to be fundamentally nonlinear, one has a better

chance of describing them with mathematical models that are also fundamentally

nonlinear. This report describes the progress we have made in achieving that

objective.

B. THE BOTTOM LINE

Here is a very brief report on our progress. The current contract has

been funded since 1980. During that time, the Principal Investigator has

published 12 papers and one book dealing with aspects of nonlinear models of

water waves. These are listed in §G of this report. The most important paper

on this list is that of Segur & Finkel (1984). It gives an analytical model of

periodic waves in shallow water. This model has 8 free parameters, and an

explicit algorithm is given to deduce these 8 parameters from 8 specific

measurements of the wave. In this sense, the model is completely

deterministic. The waves described by this model are intrinsically nonlinear,

and they are periodic in two independent horizontal directions. Just as

cnoidal waves are often used as one-dimensional models of "typical" periodic
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waves in shallow water, this model can be used to describe "typical" periodic

waves in shallow water when the restriction of one-dimensionality is relaxed,

To our knowledge, this is the first practical model ever of periodic

waves in shallow water, in which the waves are intrinsically nonlinear and

two-dimensional. The point is not that the model is more accurate than its

competitors, but rather that it has no competitors. In this respect, the

research program effected under this contract has been completely successful.

It is unfortunate that the program has been terminated just when its practical

benefits were about to be realized.

C. BACKGROUND

A more complete accounting of the work done under this contract requires

a broader perspective, because the subject of water waves is not restricted to

surface waves in shallow water. We begin the more comprehensive review by

defining a basic concept (integrability) that will be used in the remainder of

this report. A partial differential equation is said to be integrable if it

can be solved exactly as an initial value problem, with arbitrary initial data

in a certain class. Most linear equations are integrable in this sense, but

integrable nonlinear equations are uncommon. However, it happens that several

nonlinear equations that are known to be integrable are also models of water

waves in various contexts. Among the one-dimensional models of water waves

(i.e., models in which the wave pattern varies in one spatial dimension and in

S- time), the following equations all are integrable.

1. The Korteweg-deVries (KdV) equation,

u + 6uux + -O (1)

describes the evolution of long surface waves of moderate amplitude as they

propagate without dissipation in only one direction in relatively shallow

water tKorteweg & deVries, 1895). It also describes the evolution of long

internal waves under similar circumstances.

% " ~ ~ - e. .. .J- _

.. - -., ..- -- _ " .-, ., . " -'.- -- .'---", '-"- z.-.".".'-"- .".","-'-":" "."" .% -3Q



2. For internal waves, there are several meanings of "long". The KdV equation

applies if the horizontal wavelength is long in comparison with the total

fluid depth (Benney, 1966). If it is long in comparison with the thickness of

the appropriate pycnocline, but small in comparison with the total depth, then

the appropriate evolution equations is due to Benjamin (1967) and Ono (1975),

ut + uux + H (Uxx)= 0 (2)

where H (.) denotes the Hilbert transform. An intermediate equation that

6 interpolates between these two is due to Joseph (1977) and Kubota, Ko and

Dobbs (1978),

ut + UUx + T (uxx) - O, (3a)

where

T M coth 1 (y - x) f (y) dy, (3b)

and the integral is evaluated in the principal-value sense.

3. Long internal waves also admit a degenerate configuration in which the

(scaled) coefficient of the nonlinear term in (1) exactly vanishes. In this

case, the KdV equation should be replaced by the so-called modified

Korteweg-deVries equation (mKdV),

ut - uu x + Uxxx - 0, (4)

as shown by Djordjevic & Redekopp (1978).

4. Marginally unstable baroclinic waves on a beta-plane satisfy the

sine-Gordon equation,

-sin 4, (5)
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as shown by Gibbon, James & Moroz (1979).

5. The fundamental nonlinear interaction between internal and/or inertial

waves of moderate amplitude is called a resonant triad, or three-wave

interaction (Phillips, 1976). The equation describing the interaction of

exactly three resonant wave packets is

a A + c a A = i Y A* A* (6)

a A + c B A - Y Y A* A*t 2 2 X 2 2 3 1

t A + c a A - i Y A* A*

3 3 3 1 2

where A. is the complex amplitude of the envelope of the jth packet, with
linear group velocity cj, and Y, Y2 Y3 < O.

6. The nonlinear Schr6dinger equation,

i At + Axx + 2 a IA1 2 A - 0, a - ± 1 , (7)

describes the evolution of a packet of a nearly monochomatic surface waves in

sufficiently deep water (Zakharov, 1968). This equation also describes the

evolution of a nearly monochromatic packet of edge waves (Whitham, 1976).

All of these equations were derived from the known inviscid equations of

surface or internal water waves by taking various limits. That each of the E
models should be integrable is quite remarkable. A consequence of this

integrability is that each of these equations admits various families of exact

solutions, which we now discuss. Solitons are spatially localized, traveling

waves that retain their identity despite interaction with other localized

waves. For the KdV equation, a single soliton is simply the solitary wave that

was found by Korteweg-deVries:

u (x,t) - 2 K2 sech2 j c(x - K2 t + x) . (8)

5



The integrability of (1) guarantees that it admits not only (8) as a solution,

but also more complicated exact solutions, called N-soliton solutions

(Gardner, Greene, Kruskal, Miura, 19 7 4 ). These can be viewed as exact,

nonlinear superpositions of N solitary waves. It is because solitons can be

combined exactly in this way that we can hope to use them as the fundamental

building blocks in a new, intrinsically nonlinear model of water waves.

All of the integrable equations listed above admit solitons of some sort,

and this same argument applies to any of the soliton solutions. In every case,

the solitons are localized in space.

Korteweg & deVries also discovered a periodic traveling wave solution of

(1), which they called a cnoidal wave:

u (x,t) - 2 p2 k2 cn2 [p(x - ct + xo) ; k] + uO , (9)

where cn [$;k] is Jacobian elliptic function with modulus k. Like the

solitons, these periodic waves can be embedded in families of more complicated

solutions, called N-gap solutions. These solutions are quasi-periodic

functions of space and time, and they can be written in the form

u (x,t) - 2 a2 in 0, (10)

where 0 is a Riemann theta function of genus N. The N-soliton formulae follow

from these quasi-periodic solutions by taking an appropriate (infinite-period)

limit.

The KdV admits a third kind of special solution,

u (x,t) - (3t) - 2 1 f (X/ 3 t)h) (11)

where f(n) satisfies a nonlinear ordinary differential equation, and is

related to one of Painleve's transcendents. The important role of these

self-similar solutions in the long-time (t * *) asymptotic solution of (1) was

shown by Ablowitz & Segur (1977), and verified experimentally in water wave

6
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experiments by Hammack & Segur (1978).

Thus, for the KdV equation we have exhibited three different kinds of

exact solutions, any or all of which might serve as building blocks in a new

model of water waves. As one might expect, each of the integrable equations

listed above has its own set of special solutions, which are discussed in

detail by Ablowitz & Segur (1981). It remains to use these special solutions

self-consistently to construct realistic models of water waves.

D. THE MA.ETER PLAN

What steps are required to construct realistic models of water waves,

based on these special solutions of integrable equations? A logical and

prudent sequence of steps is the following:

1. Identify an integrable evolution equation in (1 + 1) dimensions that

describes approximately the evolution of surface, internal and/or inertial

waves under appropriate conditions. (One can regard equations (1)-(7) as the

cumulative result of work on this step.)

2. Solve the initial value problem for arbitrary smooth initial data that:

a) vanish rapidly enough as x - ± ; or

b) are periodic on a finite interval.

These are two different problems and they require different methods of

solution. Here "solve" means to prescribe an explicit algorithm to construct

the solution of the evolution equation at any finite time that evolved from

the given initial data. To be effective, the algorithm must be uniformly valid

in time, and this requirement excludes the possibility of direct numerical

integration of the evolution equation.

3. The general solution of the initial value problem is generally too

complicated to be of practical value. However, the general solution can be

approximated by combinations of the special solutions listed above (solitons,

7
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similarity, and quasi-periodic solutions) in a way that is consistent with the

dynamics.

a) For problems posed on - < x < -, the solution usually simplifies in

the long time (t * -) limit. Determine the long-time behavior of the general

solution.

b) For problems with periodic boundary conditions on finite interval,

the solutions are recurrent, so there is no long-time limit. For these

problems, prescribe an effective method to extract important dynamical

information from the general solution. For example, given some initial data

for one of the evolution equations listed above, determine the first

recurrence time.

4. All of the integrable evolution equations listed above are

non-dissipative, whereas real water waves are slightly viscous. Determine the

effect of weak viscous damping on these special solutions.

5. At this point, one can make precise predictions about the evolution of

real water waves, provided that the waves are constrained to evolve in only

one spatial direction (by a narrow wave tank, for example). Determine the

accuracy of this one-dimensional model in controlled laboratory experiments.

6. Most problems in water waves require models that are either

two-dimensional (surface gravity waves, internal waves on a pycnocline) or

three dimensional (general internal and/or inertial waves). Embed he

integrable equation in (1 + 1) dimensions into a physically appropriate model

of water waves in (2 + 1) or in (3 + I) dimensions. This higher dimensional

model may or may not be integrable.

7. Determine whether the one-dimensional solitons and other special

solutions or solitons are stable to transverse perturbations. Unstable

solutions probably cannot be used in a practical model of water waves.

8. Determine whether the higher dimensional model is integrable. If so,

repeat steps 2-5 for the higher dimensional problem.
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9. Construct practical deterministic models of waterwaves, using the stable,

intrinsically nonlinear waves found by this approach.

10. Construct practical statistical models of water waves, using the stable,

intrinsically nonlinear waves found by this approach.

E. CONCRETE RESULTS

How do the papers published under this contract fit into this master

plan? These papers can be organized according to the types of waves being

studied.

1. Surface waves in shallow water

In ( + 1) dimension, the governing equation is (1), and steps 1-5 had

been completed before the present contract began (see Hammack & Segur, 1978).

A generalization of (1) to (2 + 1) dimensions is the equation of Kadomtsev and

Petviashvili (1970):

(ut + 6uu x + Uxxx)x = 3 a Uyy, 0 - ± 1. (12)

This equation turns out to be integrable for a = ± 1. For capillary-type

waves, a - + 1. Segur (1982b) resolved an aspect of the initial-value problem

for (12) with a - + 1, on - c < x,y < -. For gravity-type waves, a - - 1. A

preliminary model of periodic waves in shallow water, based on (11) with

a - - 1, was given by Segur, Finkel and Philander (1983). The final version

was published later by Segur & Finkel (1984). As discussed in §B, this is

probably the most important piece of work completed under this contract. It is

a concrete example of how one can use nonlinear waves as the basic building

blocks in a model of water waves.

9



2. Surface waves in deep water

Here the governing equation in (1 + 1) dimensions is (7). Segur (1981)

found a simple rule for the viscous decay of the envelope solitons of (7).

These envelope solitons are unstable to transverse perturbations, however, so

their practical value is not evident, except in narrow wave tanks in

laboratories.

3. Long internal waves on a pycnocline

This problem may have important naval implications, because of the

possibility of submarine detection. Consequently, 5 papers were published on

aspects of this subject. Ablowitz & Segur (1980) derived equations analogous

to (2) and (3), but for periodic waves. Ablowitz, Fokas, Satsuma & Segur

(1982) generalized (2) and (3) to (2 + 1) dimensions, and determined the

transverse stability of their solitary waves. Segur & Ablowitz (1981) found

the long-time (t + -) solution of (4) and (5). The KdV equation, (1),

describes both long internal waves and long surface waves, but the viscous

decay rates of their solitons differ, as shown by Hammack, Leone & Segur

(1982). The most important paper in this series was by Segur & Hammack (1982),

who compared the predictions of (1) and (3) with experimental data, and

resolved arn outstanding puzzle about the validity of these two models.

4. General internal waves

Segur (1980) cleared up a popular misconception about how surface and

internal waves interact. Segur (1983) created an irreversible, statistical

model of internal wave interactions, based on solutions of the (3 + 1)

dimensional generalization of (6). This model is not yet practical because of

certain mathematical ambiguities that have not yet been resolved. Even so, it

may be the first genuinely new generalization of Boltzmann's equation in the

last fifty years.

10



5. Reviews

Segur (1982a) and chapter 4 of Ablowitz & Segur (1981) review how all of

these theories fit together to give a (still incomplete) picture of how water

waves evolve.

F. SUMMARY

Clearly the plan outlined in §D is ambitious. It is not surprising that

the plan has not yet been completed for all of the models listed in §C.

Fortunately, the plan was carried to the point of producing one finished

model, given by Segur & Finkel (1984). The accuracy of this model must still

be determined experimentally. Even so, because of the simplicity and the

intrinsic strength of the model, we expect it to become as widely used as an

engineering model of periodic waves in shallow water as the cnoidal wave has

been heretofore.

11

0



G. PUBLICATIONS UNDER THIS CONTRACT

BOOK

M. J. Ablowitz & H. Segur, 1981: Solitons and the Inverse Scattering
Transform, SIAM, Philadelphia, PA.

RESEARCH ARTICLES

Ablowitz, M. J., Fokas, A., Satsuma J. and H. Segur, 1982: "On the Periodic
40 Intermediate Long Wave Equation", J. Physica A, vol 15, pp 781-786.

Ablowitz, M. J. and H. Segur, 1980: "Long Internal waves in Fluids of Great
Depth", Stud. App. Math, vol 62, pp 249-262.

Leone, C., Segur, H., and J. L. Hammack, 1982: "Viscous Decay of Long Internal
Solitary Waves", Phys. Fluids, vol 25, pp 942-944.

Segur, H., 1980: "Resonant Interactions of Surface & Internal Gravity Waves",

Phys. Fluids, vol 23, pp 2556-2557.

...., 1981: "Viscous Decay of Envelope Solitons in Water Waves", Phys. Fluids,
c 1vol 24, pp 2372-2374.

--- , 1982a: "Solitons and the Inverse Scattering Transform", in Proc. of Int.
School of Physics, "Enrico Fermi", Course LXXX, ed. by A. R. Osborne &
P. M. Rizzoli, North-Holland, pp 235-277.

--- , 1982b: "Comments on Inverse Scattering for the Kadomtsev-Petviashvili
equation", in Math methods in Hydro. & Integrability in Dyn. Systems, A.
I. P. Conf. Proc. #88, ed. by M. Tabor & M. Treve, pp 211-228.

, 1984: "Toward a New Kinetic Theory of Resonant Triads", Contemp. Math.,
vol 28, pp 281-313.

12

,'I ,, ~bo/m :,.,~m~ . a m ~ ,.. ; . . _- L _ .



Segur, H. & M. J. Ablowitz, 1981 "Asymptotic Solutions of Nonlinear Evolution
Equations and a Painlev9 Transcendent", Physica, vol 3D, pp 165-184.

Segur, H. & A. Finkel, 1984: "An Analytical Model of Periodic Waves in Shallow

Water", preprint.

Segur, H., Finkel, A. and H. Philander, 1983: "Integrable Models of Shallow
Water Waves", in Nonlinear Phenomena, Springer Lect. Notes in Physics
#189, ed. by K. B. Wolf, pp 212-232.

Segur, H. & J. L. Hammack, 1982: "Soliton Models of Long Internal Waves", J.
Fluid Mech., vol 118, pp 285-304.

13

6 il



1I

REFERENCES

Ablowitz, M. J., Fokas, A., Satsuma, J. and H. Segur, 1982: J. Physics A, vol
15, pp 781-786.

Ablowitz, M. J. and H. Segur, 1977: Stud. App. Math, vol 77, pp 13-44.

1980: Stud. App. Math, vol 62, pp 249-262.

--- , 1981: Solitons and the Inverse Scat. Trans., SIAM, Philadelphia, PA.

Benjamin, T. J., 1967: J. Fluid Mech., vol 29, p 559.

Benney, D. J., 1966: J. Math & Physics, vol 45, pp 52-63.

Djordjevic, V. D. & L. G. Redekopp, 1978: J. Phys. Ocean., vol 8, p 1016.

Gardner, C. S., Greene, J. M., Kruskal, M. D., and R. M. Miura, 1974: Comm.
Pure App. Math, vol 27, pp 97-133.

Gibbon, J. D., James, I. N. and I. M. Moroz, 1979: Proc. Roy. Soc. London A,
vol 367, pp 219-237.

Hammack, J. L. and H. Segur, 1978: J. Fluid Mech. vol 84, pp 337-358.

. Joseph, R. I., 1977: J. Phys. A., vol 10, p L225-L227.

Kadomtsev, B. B. and Petviashvili, V. I., 1970: Soy. Phys. Doklady, vol 15,
pp 539-541.

Korteweg, D. J. and G. deVries, 1895: Phil. Mag., Ser. 5, vol 39, pp 422-493.

Kubota, T., Ko, D. R. S. and L. Dobbs, 1978: A.I.A.A. J. Hydrod., vol 12,
pp 157-165.

Leone, C., Segur, H. and J. L. Hammack, 1982: Phys. Fluids, vol 25,
pp 942-944.

Ono, H., 1975: J. Phys. Soc. Japan, vol 39, p 1082.

14

,F.

". ,' ' .-.":- '-.' '/-. -,- '- -' ' " " " -" .." = ' - " -"-,. , =' -. .l ,. -,,.,.". " ,.".,.., ,.



%, -C

Phillips, 0. M., 1977: The Dynamics of the Upper Ocean, 2nd ed., Cambridge V.
Press, London.

Segur, H., 1980: Phys. Fluids, vol 24, pp 2556-2557.

--- , 1981: Phys. Fluids, vol 24, pp 2372-2374.

--- , 1982a: In Proc. Int. School of Physics "Enrico Fermi", Course LXXX, ed.
by A. R. Osborne & P. M. Rizzoli, North-Holland, pp 235-277.

--- , 1982b: Math. Methods in Hydrod. & Integrability in Dyn. Systems, A. I. P.
Conf. Proc. #88, ed. by M. Tabor & Y. M. Treve, pp 211-228.

--- , 1983: Contemp. Math, vol 28, pp 281-313.

Segur, H. & M. J. Ablowitz, 1981: Physica, vol 3D, pp 165-184.

Segur, H. & A. Finkel, 1984: "An Analytical Model of Periodic Waves in Shallow
Water", preprint.

Segur, H., Finkel, A., & H. Philander, 1983: Nonlinear Phenomena, Springer

Lect. Notes #189, ed. by K. B. Wolf, pp 212-232.

Segur, H., & J. L. Hammack, 1982: J. Fluid Mech., vol 118, pp 285-304.

Whitham, G. B., 1976: J. Fluid Mech., vol 74, pp 353-368.

Zakharov, V. E., 1968: J. App. Mech. Tech. Phys., vol 9, pp 190-194.

15

*6o



FIMED

7-85

IS

DTIC


